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ABSTRACT 

Software Effort estimation is the process of predicting the most realistic amount of effort required to 

develop a software project. Accurate software effort and cost estimation are pivotal for successful 

project management in software development. As the application of software is extensively increased 

in its size and complexity, the traditional methods are not adequate to meet the requirements. To 

achieve the accurate estimation of software effort ensemble learning methods are being used. 

Addressing challenges of overestimation and underestimation, the exploration of Ensemble Learning 

Methods (ELMs) is undertaken to evaluate estimation accuracy. By amalgamating predictions from 

multiple models, ensemble learning outperforms individual ones, achieving precise estimation without 

reliance on a singular model. In conclusion, a comprehensive approach is presented to optimize 

estimation techniques, ensuring successful project outcomes within budget and schedule constraints. 
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INTRODUCTION 

In the realm of software engineering, one of the fundamental challenges lies in accurately estimating 

the effort required for a project's development. Software Development Effort Estimation (SDEE) 

serves as the compass guiding project managers and teams through the complex landscape of resource 

allocation, budgeting, and scheduling. At its core, SDEE is the process of forecasting the resources, 

manpower, time, and technologies necessary to bring a software project to fruition. This predictive 

exercise is not merely a procedural formality but a critical precursor to the success of any software 

endeavor. 

Early estimation within the Software Development Life Cycle (SDLC) is paramount. It serves as a 

blueprint for the project team, offering clarity and direction from inception to deployment. Accurate 

estimations empower teams to navigate challenges effectively, ensuring timely delivery of high-quality 

software while adhering to budgetary constraints. Conversely, inaccurate estimations can sow seeds of 

discord, leading to unforeseen risks, budget overruns, schedule delays, and compromised product 

quality. 

The stakes are high in today's competitive software industry. Companies are under relentless pressure 

to produce top-tier software solutions within strict timeframes and budgets. This demands a delicate 

equilibrium between cost and quality, where every decision carries weight and ramifications. In this 

dynamic environment, mastering the art of software effort estimation isn't just a best practice; it's a 

strategic imperative for survival and success. 

LITERATURE SURVEY 

In[1],The authors Suyash Shukla, Sandeep Kumar had addressed the Software Effort Estimation 

problem in different ways, including models developed using machine learning techniques. An 

experimental analysis is conducted over 17 datasets from PROMISE and ISBSG data repositories to 

evaluate the performance of the proposed model under different scenarios. 

In[2],The author Parvas Ranjan Bal had experimented the Software Effort Estimation by using 

MultiLayer Perceptron (MLP).In this Desharnais dataset has been used where it is observed that R2 
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score of AdaBoost MLPNN is 82.213% which is highest among all the models, whereas the R2 score 

of MLPNN is 78.3%. In[3],The author Somya Goyal had proposed a heterogenous stacked ensemble 

for effective effort estimation with Artificial Neural Network (ANN) and Support Vector Regressor 

(SVR) as base learners. Five datasets have been used from PROMISE Repository and final result had 

stated that stacking is effective statistically as the proposed model improves the performance by 50.4% 

in MAR and 54.6% in 

MMRE of base models. 

  

EXISTING METHOD 

There are several existing systems available for the software effort estimation with different 

techniques. Some include: SVR, KNN, MLP. 

Support Vector Regression (SVR) is a powerful machine learning technique that can be applied to 

software 

effort estimation mainly used for regression tasks. It is generally used for handling nonlinear 

relationships and it is used to find best hyperplane separating the effort levels based on its attributes in 

software effort estimation and for complex relationships. K Nearest Neighbours(KNN) is a non-

parametric machine learning algorithm used for both classification and regression tasks. It is 

particularly used for projects with well- defined feature spaces and moderate-sized datasets can be 

applied to predict effort metrics based on similarities between the current project and historical data 

points. A multilayer perceptron (MLP) is a type of artificial neural network that consists of multiple 

layers of nodes (neurons) organized in a feed forward manner. It is used for classification, regression, 

and pattern recognition. By training the MLP on past data, it can learn patterns and relationships 

between various project factors and estimate the effort needed for new projects 

PROPOSED METHOD 

Ensemble learning has emerged as a powerful technique in the field of machine learning, offering a 

range of advantages over traditional individual models. This is because ensembles can effectively 

reduce the variance and bias of individual models, leading to better performance on both training and 

test data. It is preferred over other machine learning models because it combines predictions from 

multiple models to improve accuracy. This refers to a technique where multiple models are trained 

independently and then combined to make predictions. These models can be of the same type 

(homogeneous ensemble) or different types (heterogeneous ensemble). Examples of ensemble 

methods include: Random Forest, Bagging, Boosting, Stacking. Stacked ensemble, also known as 

stacked generalization or stacking, is a more advanced form of ensemble learning where the predictions 

of multiple base models are used as input features to a meta-model which then makes the final 

prediction. The key difference here is the introduction of a metamodel that learns to combine the 

predictions of the base models. 

 
Figure I. Stacked Generalization Method – Regression. 
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DESIGN STRUCTURE 

The design structure emphasizes a systematic approach to Software effort estimation using stacked 

ensemble learning Techniques. Stacked ensemble learning involves combining multiple base models 

to improve predictive performance. 

1. Data Collection and Preparation: Historical data has been collected on software development 

projects where datasets China has been taken. This data should include features such as project size, 

complexity, team experience, and other relevant factors. Then the data is cleaned by the process of 

normalization to handle missing values, outliers, and inconsistencies. Preprocessing the data by scaling 

numerical features, and performing any other necessary transformations. 

2. Feature selection: In this process the  features Prioritized that are highly relevant to the software 

development process that had a significant impact on effort estimation. Data analysis has been done to 

identify features that correlate strongly with the target variable (effort) and are informative for 

prediction. 3.Model Selection: A variety of base models that are suitable for regression task has been 

taken that include Random forest (RFR),Multilayer perceptron(MLP),Decision tree(DT),Bagging, 

Boosting. It is experimented with different algorithms to know which performs the best 

4. Stacked Ensemble Aggregation: Stacked ensemble framework has been implemented where 

multiple models are trained and their predictions are combined using a meta-learner. The data is split 

into train and test sets. The predictions of the base models are taken as features to train the meta-learner 

and then experimented with different meta-learners. 

5. Evaluation: Evaluated the performance of the stacked ensemble model using appropriate 

metrics such as mean absolute error (MAE), mean squared error (MSE),Mean Magnitude 

relativeerror(MMRE),Prediction. Compared the performance of the stacked ensemble model with 

individual base models to assess whether the ensemble provides a significant improvement in 

prediction. 

 

 

CRITERIA NAME CRITERIA DEFITION 

 
Table I. Formulae of MSE, MRE, MMRE, R2 

  

SYSTEM BLOCK DIAGRAM 
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Figure II. Architecture of the proposed Experiment to construct the stacked generalization ensemble 

model. 

 

 

RESULT ANALYSIS 

 

Final results of the ensemble model techniques are shown in the below table: 

Model MSE MMRE R2 SCORE PREDICTION 

Decision Tree 0.1406 3.1856 0.6739 67.39 

Random Forest 0.11 3.9135 0.7951 79.51 

Bagging 0.1078 1.7182 0.7682 76.51 

GradientBoosting 0.0306 4.2092 0.8563 85.63 

MLP 0.1264 4.1132 0.8963 89.63 

 

Table II. Summarized Final Results of the developed ensemble model. 

Final results of the developed stacked generalization ensemble model are shown in the below table: 

Model MSE MMRE R2 SCORE PREDICTION 

Decision Tree 0.1234 1.9064 0.884 88.39 

Random Forest 0.11 2.763 0.8252 82.51 

Bagging 0.1077 1.5047 0.9207 92.07 

GradientBoosting 0.0306 4.2092 0.7074 70.74 

MLP 0.1264 2.374 0.9163 91.63 

 

Table III. Summarized Final Results of the developed stacked ensemble model. 

Results of Statistical Tests: 

As we discussed earlier the critical value for k=3, n=10 and alpha/p-value = 0.05 which is 7.8. If 

Friedman statistic is greater than critical value, we reject the null hypothesis else we accept the null 

hypothesis: 

Dataset Friedman 

ChiSquare Statistic 

P-Value 

China 12.96 0.0114 

Table IV. Results of Friedman ChiSquare Test 
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Results after feature selection performed and software effort estimation is predicted: 

 

 
Figure III. Software effort is predicted 

 

Graphical representation of results before and after implementing feature selection, stacked ensemble 

generalisation are shown below: 

 

 
Figure IV Graphical representation of results stacked ensemble generalisation 

  

CONCLUSION 

Estimating Software Development Effort (SDE) is crucial for project managers, aided by SDEE 

models acting as decision support systems. Flexibility and robustness are key concerns for any 

estimation model, especially across diverse data. The choice and performance of machine learning 

algorithms depend on the dataset, as no single algorithm fits all problems. Combining strengths of 

different techniques can enhance accuracy in SDE estimation. This thesis focuses on developing an 

effective SDE estimation model. Stacked generalization ensemble method is chosen after thorough 

research. Evaluation compares its efficiency with existing models. 
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